芯城品牌采购网 > 品牌资讯 > 技术方案 > 改进JBS结构以降低泄漏电流和提高浪涌电流能力

改进JBS结构以降低泄漏电流和提高浪涌电流能力

芯城品牌采购网

4995

JBS结构降低泄漏电流(IR
 
SBD是由半导体与金属的接合形成的。由于半导体和金属之间的势垒不同,它起着二极管的作用。由于半导体-金属界面上的分子结构可能是不连续的,因此可能会出现表面不规则、晶体缺陷或其它异常现象。当强电场作用于含有这些缺陷的半导体-金属界面时,会有所谓的泄漏电流(IR)流动。
在具有传统结构的SBD中,耗尽区延伸到半导体侧(如下所示),导致电荷(或电子)产生的电场在半导体-金属界面处最强。
 

相反,在JBS二极管中,耗尽区延伸于部分埋在半导体表面下的p和n-区之间。当反向偏压增大时,p型耗尽区相互穿插,最大电场位置直接移动到p区下面。这会减少可能存在缺陷的表面上的电场,从而减少泄漏电流。

 
2-1_705.jpg
传统结构的SBD
 
2-2_947.jpg
JBS SBD
 
集成PiN肖特基(MPS)结构提高浪涌电流能力
 
当传统的SBD正向偏置时,电流流过以下路径:金属 → 肖特基势垒 → Si (n-) → Si(n+)。由于掺杂浓度较低,Si(n-)层电阻较大。因此,此SBD的IF-VF曲线如下所示。
 
SiC SBD的应用包括PFC电路,PFC电路必须保证在大电流下工作,因为它们在电源接通和负载变化时都会瞬间暴露在大电流条件下。在这种情况下,具有如下所示的IF-VF曲线的SBD可能发生过热现象。
 
2-3_675.jpg
通过传统SBD的电流
 
2-4_780.jpg
传统SBD的IF-VF曲线
 

为了解决这个问题,东芝开发了一种新的SBD,它采用改进的JBS结构,其中包含了集成PiN-肖特基(MPS)结构的概念。MPS结构是其p+区埋在SBD的n-区中,如下所示。在东芝的设计中,JBS结构的部分p层(图中阴影部分)被放大,这部分的杂质浓度增加。p+区和n-区形成一个pn结二极管,在需要大电流(浪涌电流)时打开。这增加了SBD的载流能力,因此即使在大电流下也能降低正向电压的升高,并增加最大允许浪涌电流值。

 

MPS结构的特点是在阳极电极下方的p+–n-–n+结构。

 

在低电流下,n-区通常具有高电阻。然而,当SBD正向偏压时,空穴和电子分别从p区和n区流入n-区,同时保持电中性。在这个时候,空穴和电子都存在于高浓度的n-区内。因此,n-区将作为高掺杂浓度区域,特别是在高电流下,表现出非常低的电阻(传导性调制)。因此,该SBD具有如下所示的IF-VF曲线,在高电流区域具有低VF

 
2-5_972.jpg


免责声明:
文章内容转自互联网,不代表本站赞同其观点;
如涉及内容、图片、版权等问题,请联系2644303206@qq.com我们将在第一时间删除内容!